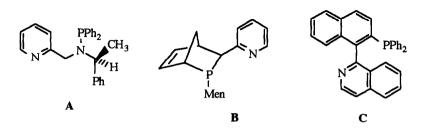


0957-4166(94)E0029-A

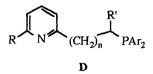
(-)-(4S,5R)-4-(2-Pyridyl)-5-(diphenylphosphino)methyl-2,2dimethyl-1,3-dioxolane a new chiral ligand for enantioselective catalysis

Giorgio Chelucci,^{2*} M. Antonietta Cabras,^a Carlo Botteghi^b and Mauro Marchetti.^c


^aDipartimento di Chimica, Università di Sassari, via Vienna 2, I-07100 Sassari, Italy;

^bDipartimento di Chimica, Università di Venezia, Calle Larga, S. Marta 2137, Venezia, Italy;

Istituto A.T.C.A.P.A., C.N.R., via Vienna 2, I-07100 Sassari, Italy.


Abstract: The title compound (PYDIPHOS) has been prepared by a ten reaction sequence from dimethyl L-(+)tartrate and checked in the palladium-catalyzed asymmetric hydroesterification of styrene and in the nickel catalyzed asymmetric cross-coupling reaction of 1-phenylethyl magnesium bromide with vinylbromide.

The synthesis of new chiral ligands for transition metals is an essential tool for the development of novel catalytic systems exhibiting high reactivity and enantioselectivity.¹ In this context, the complex forming properties of pyridylphosphine ligands attract increasing attention and the study of their catalytic activity has been recently undertaken.² Some chiral pyridylphosphines bearing the chiral group bound to the phosphorus atom by a N-P linkage (A) have been described.³ Instead, only two literature reports are available on the synthesis of optically active pyridylphosphines without N-P bonds, namely the menthylphosphine B^4 and the (-)-(S)-1-(2-diphenylphosphino)-1-naphtyl)isoquinoline C.⁵

As a part of our work aimed at the synthesis of chiral pyridine ligands,⁶ we undertook a study on general methods to obtain chiral pyridylphosphines (\mathbf{D}) from cheap naturally occurring chiral compounds. Now, we

report the preparation of PYDIPHOS (10) as the first representative member of enantiomerically pure pyridylphosphines using L-(+)-tartaric acid as the starting material.

Synthesis of 10 starts from the diol 2, which was prepared by literature procedures⁷ from diethyl

COOCH₃ H OH HO H HOH 2C CH₂OH HOH₂C OTBDPS ĊOOCH3 1 2 3 d онс OTBDPS NC OTBDPS OTBDPS NOH 5 83% 86% OTBDPS ОН OTs 9 t Ph 95% 10 CI 11

a: Literature; b: NaH (1 equiv), t-BuPh₂SiCl (TBDPSCl); c: $(COCl)_2$, DMSO, Et₃N, -78 °C; d: NH₂OH HCl, 10% K₂CO₃; e: N,N'-carbonyldiimidazole; f: CpCo(COD), acetylene, toluene, 120 °C, 14 atm; g: Bu₄NF, THF; h: TsCl, Et₃N, DMPA, CH₂Cl₂; i: Ph₃P, Na/K, dioxane; l: $(PhCN)_2PdCl_2$, CH₂Cl₂, 25 °C

Scheme

L-(+)-tartrate (Scheme). Selective protection of 2 (75%) and Swern's oxidation gave the aldehyde 4. The crude aaldehyde was converted into the nitrile 6 (89% based on 3) via formation of the corresponding oxime followed by dehydration with N,N'-carbonyldiimidazole. Cobalt catalyzed co-cyclotrimerization of nitrile 6 with acetylene afforded the key pyridine intermediate 7 (91%).⁷ The hydroxyl group was then deprotected and converted into the tosylate 9 (86%). Finally, nucleophilic displacement of tosyl group with a Na/K diphenylphosphide mixture gave PYDIPHOS in 29% overall yield based on 2.⁹

The enantioselective ability of the new chiral ligand was checked in two classical reactions catalyzed by a transition metal complex. At first we examined the hydrocarbethoxylation of styrene¹⁰ in the presence of the catalytic precursor (PYDIPHOS)PdCl₂ prepared by treating a solution (CH₂Cl₂) of **10** with (PhCN)₂PdCl₂. The complex is crystalline and exhibits a fairly good stability in the air. The branched ethyl ester **13** was obtained regiospecifically with a very high chemoselectivity ($\geq 90\%$); the prevailing configuration of **13** was (S) and its enantiomeric purity about 20%.

Ph - CH = CH₂
$$\xrightarrow{\text{CO/EtOH}}$$
 Ph - CH - CH₃ + Ph - CH₂ - CH₂ - COOEt
12 13 COOEt 14

We then considered the cross-coupling reaction¹¹ of 1-phenylethylmagnesium bromide with vinylbromide catalyzed by the *in situ* formed complex from anhydrous Nickel(II)chloride and PYDIPHOS (NiCl₂ to 10 molar ratio 1/1).³

$$\begin{array}{cccc} (R,S) \\ Ph - CH - CH_3 + Br - CH = CH_2 & & \begin{array}{cccc} 11/NiCl_2 \\ \hline Et_2O, 0 \circ C \end{array} & \begin{array}{ccccc} (R) \\ Ph - CH - CH = CH_2 \\ \hline H_3 & 17 \end{array}$$

Enantioselectivity (26%) was comparable to that of the above mentioned process but in this case the chemoselectivity was rather poor (50%) and the (-)-(R)-2-phenyl-1-butene was recovered in only 40% yield. The enantioselectivity of this catalytic process, although low, resulted to be however remarkably higher than that (1.4%) obtained for the cross-coupling reaction between 1-phenylethylmagnesium chloride and vinyl bromide catalyzed by NiCl₂ complex with a pyridylphosphine containing a N-P bond.³

Efforts to achieve a higher enantiodifferentiation degree by structural modifications of PYDIPHOS are in progress in our laboratories.

Acknowledgement. This work was financially supported by the Ministero dell'Universita' e della Ricerca Scientifica e Tecnologica, Roma.

References and Notes

- 1. Brown, J. M., Chem. Soc. Rev., 1993, 25, and reference therein.
- 2. For a review: Newkome, G.R. Chem. Rev., 1993, 2067.
- Brunner, H., Li, W., Weber, H., J. Organometal. Chem., 1985, 288, 359; Brunner, H., Weber, Chem. Ber., 1985, 118, 3380
- 4. de Vaumas, R., Marinetti, A.; Ricard, L., Marhey, F., J. Am. Chem. Soc., 1992, 114, 261.
- 5. Alcock, N.W., Brown, J.M., Hulmes, D.I., Tetrahedron: Asymmetry, 1993, 4, 743.
- 6. Chelucci, G., Soccolini, F., Tetrahedron: Asymmetry, 1992, 3, 1235.
- 7. Waanders, P.P., Thijs, L., Zwanemburg, B., Tetrahedron Lett., 1987, 28, 2409
- 8. The cobalt(I)-catalyzed co-cyclotrimerization reaction of alkynes with nitriles is one of the most useful methods for the preparation of pyridines and their derivatives.¹² We used this reaction to obtain chiral alkylpyridines,¹³ 1-(2-pyridyl)alkylamines¹⁴ and alkyl-2,2'-bipyridines.¹⁵
- 9. The structure assigned to each compound was in agreement with its spectral (¹H and ¹³C NMR, IR, and mass) characteristics, the optical rotation of PYDIPHOS obtained in two different preparations was $[\alpha]^{25}D$ 48.0 (c 7, CHCl₃). Yield cited are for compounds proved to be >95% pure.
- 10. Consiglio, G., Pino, P., Adv. Chem. Ser., 1982, 196, 371; Botteghi, C., Consiglio, G., Pino, P., Chimia, 1973, 27, 477;
- 11. For a review on "Asymmetric cross Grignard coupling", see: Ojima, I., Clos, N., Bastos, C., *Tetrahedron*, **1989**, *45*, 6901.
- For a review on the cobalt-catalyzed synthesis of pyridines see: Bonnemann, H., Angew. Chem., 1985, 97, 264; Angew. Chem. Int. Ed. Engl., 1985, 24, 248.
- 13. Azzena, A., Chelucci, G., Delogu, G., Gladiali, S, Marchetti, M., Soccolini, F., Botteghi, C., Gazz. Chim. Ital., 1986, 116, 307
- 14. Falorni, M., Chelucci, G., Conti, S., Giacomelli, G., Synthesis, 1992, 872.
- 15. Chelucci, G., Gazz. Chim. Ital., 1992, 122, 89

(Received in UK 1 December 1993; accepted 25 January 1994)